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An analytical study is presented to determine if the persistency of the leading-edge vortex in an insect wing
can be explained as the balance between vorticity generation at the leading edge and advection plus effects of
vorticity stretching and tilting by the flow along the wing span. It is found that a spanwise flow of the required
magnitude is produced by the simple rotation of the wing about its root at a constant angle of attacksno
supination or pronationd, and that the regions where this equilibrium exists in stable form are well localized,
independent of the rotation velocity, almost independent of the position along the wing, and weakly dependent
on the angle of attack, for angles below.70°. In contrast, extended regions of vorticity are expected for angles
of attack above.75°.
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I. INTRODUCTION

One particularly intriguing aspect of insect flight is the
persistence of leading-edge vorticity against its tendency to
be swept by the flow around the insect wing. The resulting
leading-edge vortexsLEVd regularizes the flow over the
wing at high angles of attack, and also increases the achiev-
able lift f1g. Different mechanisms have been proposed to
explain the persistence of the LEV. On the one side, the
effective angle of attack is greatly reduced, compared to the
geometrical one, by the downflow generated by tip vortices
and wake, thus reducing the tendency towards instabilityf2g.
On the other side, the flow along the wing span takes energy
from the vortex core to compensate for that generated at the
leading edge, thus producing an almost stationary LEVf3,4g.
Both mechanisms, most certainly, play a part, and in this
highly nonlinear, genuine three-dimensional problem their
study is very difficult, including the interpretation of detailed
numerical simulations in which the LEV stability is observed
f5,6g.

In the present work we explore the possibility of stabili-
zation by action of the spanwise flow alone. Several approxi-
mations are required to tackle this problem analytically. First,
we use the experimentalf2g and theoreticalf7g information
that the flow over the wing has strong two-dimensional fea-
tures, with highly concentrated regions of vorticity, which
are then modeled as point singularities of a potential flow.
Second, taking advantage of the relatively high Reynolds
numbers involved in insect flightf8g, inviscid potential
theory is used to determine the flow around the wing, and
Kutta-Joukowski conditions are used to evaluate circulations
and emission of vorticity from the leading edge. These are
the main approximations, followed by other approximations
of more technical nature that will be indicated when needed.
The main conclusion is that, for a given wing, a localized
region of stable equilibrium between generation and effect of
the spanwise flow exists that is independent of the rotation
velocity, and practically independent of spanwise position, it
only depends, and rather weakly, on the angle of attack for
not too large anglessbelow .75°d.

II. THREE-DIMENSIONAL FLOW IN ROTATING WINGS

Let us consider a flat wing of chord lengthDszd that ro-

tates with constant angular velocityVW T about a fixed axis
sFig. 1d. The rotation axis and the normal to the plate are at
a constant anglea, so that the wing attacks the fluid with this
angle as it rotates, with the fluid at rest far away. We take
comoving Cartesian coordinatessx,y,zd with x along the
wing chord and withy normal to it, such thatx=−Dszd /2
corresponds to the leading edge, andx=Dszd /2 to the trailing

edge. Thez axis sperpendicular toVW Td has origin at the
rotation axis and runs along the middle of the wing span. In
this rotating system the flow has a background constant vor-

ticity −2VW T plus regions of highly concentrated vorticity,
modeled as appropriate singularities of a potential flow, so
that we write the velocity as the sum of a uniformly rotating
flow plus a potential partf9g

u = − VWT 3 x + = f. s1d

The incompressibility condition= ·u=0 implies thatf
satisfies the Laplace equation=2f=0. Besides, as far away

from the plate the flow isu=−VW T3x, f has to grow more
slowly than linearly with the distance from the wing asuxu
→`. On the other hand, the boundary condition at the wing
is zero normal velocitysuy=0d so that, from Eq.s1d, we can

write sVT;uVW Tud

FIG. 1. Sketch showing the rotating wing, coordinate system,
and conventions used.
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wing
= sVWT 3 xdwing = VTzsina.

These boundary conditions suggest to seek a potential of
the form

f = − VTzff0sx,yd − x cosa − y sinag, s2d

wheref0sx,yd is the two-dimensional potential correspond-
ing to the fluid with velocity componentsU0x=cosa, U0y
=sina, away from the wing. This is the usual approximation
of blade element theoryf10g that models the two-
dimensional flow in each sectionz=const of the plate, as if it
moved with a translational velocityUx=VTzcosa, Uy
=VTzsina. This approach neglects curvature effects in each
z=const section of the wing, which is a very good approxi-
mation except very close to the rotation axis. It is then im-
mediate to see that the potentials2d satisfies the Laplace
equation and the correct boundary conditions.

The two-dimensional flow potentialf0sx,yd can be
readily obtained using complex variable techniques. The
complex potential for the flow considered is given in terms
of the transformed variablez as f7g

v0szd = U0
*z + U0

a2

z
+

G0 + Gv
0

2pi
ln z +

Gv
0

2pi
lnsz − zvd

−
Gv

0

2pi
lnSz −

a2

zv
* D , s3d

where U0=cosa+ i sina, a=Dszd /4, G0 is the circulation
around the plate, andGv

0 andzv the circulation and position,
respectively, of the LEV. The relation between the complex
variablesZ;x+ iy andz is given by the Joukowski function

Z = z +
a2

z
. s4d

As shown inf7g the circulationsG0 andGv
0 are determined by

Kutta-Joukowski conditionsdv0/dz=0 at both edgesz= ±a.
The upper indices 0 indicate that these circulations are those
corresponding toU0, a dimensionless magnitude, so that both
circulations have units of length. Actual circulations have
values −VTzGv

0 and −VTzG0.
Note thatf0sx,yd picks up an implicit dependence onz

througha andzv if these parameters depend onz. So, as long
as the chord length and the vortex position vary slowly with
z, the strongestz dependence is that explicitly considered,
and Eq.s2d is a good representation of the flow.

The potentialf0sx,yd can now be determined as

f0sx,yd = Refv0„zsZd…g. s5d

The resultingz-component of the velocity relative to the
wing is then

uz = − sVWT 3 xd ·ez +
]f

]z
= 2VTsx cosa + y sinad

− VT Refv0„zsZd…g.

Besides, as RefU0
*Zg=x cosa+y sina, we can define an aux-

iliary potential

vauxszd ; v0szd − 2U0
*Sz +

a2

z
D , s6d

so thatuz can be written as

uz = − VT Refvaux„zsZd…g. s7d

This expression is not yet final because the potentialf0 is
not completely defined as an arbitrary constant can be added
to it. One can determine this additive constant using the con-
dition that the net flow across anyz=const plane has to be
finite, as the finite wing cannot force the flow of an infinite
mass of fluid. At large values ofx and/ory the expression of
uz is given by

uz → VTsx cosa + y sinad − VT

G0 + Gv
0

2p
w,

wherew is the argument ofz, measured from thex axis. The
integral of the termsx cosa andy sina cancel by symmetry,
so that for the integral ofuz across thez=const plane to be
finite, it is readily seen that a constant of valueVTsG0

+Gv
0d /2 must be added to the expression ofuz given by Eq.

s7d.
Finally, note that because of thez-dependence of transla-

tional velocity of each section of the wing, az-dependent
circulation results. This, in turn, makes the velocityuz dis-
continuous, with discontinuity

Duz = − VTsG0 + Gv
0d, s8d

across a vorticity sheet shed at the trailing edgef11g. To fix
the discontinuity surface at the trailing edge we must adopt
the convention that the branch of the function lnz in Eq. s3d
corresponds to the line Imfzg=0, Refzg.0. With all this we
finally have

uz = − VT Refvaux„zsZd…g + VT

G0 + Gv
0

2
, s9d

together with expressionss3d and s6d.
The resulting flow structure corresponds to a highly com-

pact vortex that models the observed region of concentrated
vorticity. This vorticity originates in the leading edge and is
fed to the vortex through a vortex sheet connecting the vor-
tex and the edge. The vorticity content of this sheet is ex-
pected to be low in the stationary regime, when a stable LEV
is well developed, because the flow regularization near the
leading edge, due to the LEV itself, should lead to a low rate
of vorticity emission from this edge. We will see later that
only when this rate is sufficiently small can it be balanced by
the effect of the flowuz, which can happen only at particular
positions of the vortex

Since the circulation varies along the vortex, an essen-
tially three-dimensional structure must exist, with vorticity
vector components alongz and also in the plane perpendicu-
lar to z. We should then more precisely speak of the circula-
tion associated to thez-component of vorticity. The variation
of vortex circulation implies also the variation of the circu-
lation along the wing, which requires, by a direct application
of Stokes theoremf12g, that the velocity along the wing has
a discontinuity, the jump given by Eq.s8d. This velocity
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jump, indirect evidence of az-dependent circulation, is well
documented in Fig. 1scd of Ref. f2g, where isolines of span-
wise velocity are shown. A marked variation of velocity
across a thin region in the rear of the wing is clearly shown
in that figure.

III. VORTICITY EVOLUTION

Consider now the evolution of vorticityvW = = 3u in the
rotating system, at high Reynolds number, governed by the
equationf12g

]vW

]t
+ su · = dvW = svW · = du + 2sVWT · = du.

If we write vW =−2VW T+v8W to make explicit the concentrated

sor absoluted vorticity v8W , and consider thez-component of
the above equation, we obtain

]vz8

]t
+ =' · su'vz8d = =' · sv'8

W uzd, s10d

where the symbol' refers to the planesx,yd transverse toez.
Since

=' · sv'8
W uzd = uz=' · v'8

W + v'8
W · ='uz = − uz

]vz8

]z

+ v'8
W · ='uz, s11d

the right-hand side of Eq.s10d includes the effects of advec-
tion of vz8 by the spanwise flowuz, represented by the first
term in the right-hand side of Eq.s11d, and of tilting and

stretching of transverse vorticityv'8
W by the same flow, the

second term in the right-hand side of Eq.s11d. Analogously,
for the second term in the left-hand side of Eq.s10d, since the
transverse flowu' is itself solenoidal, from Eq.s2d, we have

=' · su'vz8d = u' · ='vz8

that represents the advection ofvz8 by the transverse flow.
If Eq. s10d is integrated on a transverse surfaceS that

includes all concentrated vorticity associated to the LEV, for
instance, the region inside the instantaneous streamline
shown in Fig 2, the transverse divergence term in the left-
hand side leads by Gauss theorem tosC is the curve limiting
the surfaced

E
S

=' · su'vz8ddS=R
C

vz8u' ·ndl.

Only the inflow of z-vorticity generated at the solid
boundary contributes to this last integral

E
S

=' · su'vz8ddS= − UdGz

dt
U

B
, s12d

whereGz is the integral ofvz8 over S, and udGz/dtuB repre-
sents its instantaneous rate of change by generation at the
boundaryB.

Analogously, we have for the transverse divergence term
in the right-hand side

E
S

=' · sv'8
W uzddS=R

C

uzv'8
W ·ndl, s13d

to which, as before, only contributes the section ofC that
coincides with the solid boundary. Since the vorticity in the
boundary layer due to the flow over the wing is perpendicu-
lar to n, the only component of concentrated vorticity that
has a component alongn is that due to rotation, as the fluid
in contact with the solid is forced to rotate with angular

velocity VW T, with corresponding vorticity 2VW T. We thus have

R
C

uzv'8
W ·ndl = − 2VWT ·eyE

−2a

xS

uzdx= − 2VT cosaE
−2a

xS

uzdx,

wherexS is the x-coordinate of the stagnation point of the
flow over the wingssee Fig. 2d.

We obtain in this way,

]Gz

]t
= UdGz

dt
U

B
− 2VWT ·eyE

−2a

xS

uzdx. s14d

The Gz in this equation represents the circulation of the
z-component of concentrated vorticity, which is modeled as
the corresponding singularity of the potentials2d, expressed
as

Gz = − VTzGv
0.

To obtain an expression fordGz/ udtuB we take into account
that the vorticity shed at the leading edge is that necessary to
ensure the Kutta-Joukowski condition at that boundary when
the configuration of the flow changes. This happens in the
solutions3d as the vortex inzv moves advected by the trans-
verse flow. We note here that the vortex is always advected
by the transverse flow as there are no stagnation points in the
regions considered. To look for regions with a stationary vor-
ticity distribution, where the continuous generation of vortic-
ity at the leading edge is balanced by the effect of the span-
wise flow, we approximate the value ofdGv

0/dt as that
associated to the free motion of the vortex even at those
locations. This is better justified later as it is found that only
extremely close to the locations of stationary vorticity does

FIG. 2. sad Two-dimensional streamlines, andsbd detail with
contour used to obtain Eq.s14d.
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the last term in Eq.s14d become comparable todGz/ udtuB, so
that the transverse motion of the vortex proceeds unaffected,
advected by the transverse flow, until very close to the men-
tioned regions. In this way we have

dGv
0

dt
=

]Gv
0

]zv

dzv

dt
+

]Gv
0

]zv
*

dzv
*

dt
,

where we have used for conveniencezv and its complex
conjugatezv

* as independent variables, instead of Reszvd and
Imszvd, and where

dzv
*

dt
= Sdzv

dt
D*

= S − VTz
dv̂0

dz
D

zv

USdZ

dz
D

zv

U−2

,

with

v̂0szd ; v0szd −
Gv

0

2pi
lnfZszd − Zszvdg. s15d

The last two expressions result when one relates the motion
of zv to the motion of the true vortexsthat in theZ-planed,
but expressed in terms of the potential obtained in the
z-plane, which is sometimes referred to as the Routh theorem
f13,14g. We can then write

UdGz

dt
U

B
= 2sVTzd2USdZ

dz
D

zv

U−2

ReFS ]Gv
0

]zv
*

dv̂0

dz
D

zv

G .

s16d

In summary, we arrive at the following picture of the dy-
namics of the vortex. There is a growth due to the vorticity
generated at the leading edge that is transported to the vortex
by the transverse flow. This transverse flow only advects the
z-component of vorticity without changing its associated cir-
culationGz, and so all corresponding circulation generated at
the leading edgesby release ofvz from the boundary layerd
is fed to the vortex, what is expressed by Eq.s12d. The
spanwise flowuz, in turn, has a more complex effect. It ad-
vects along the wing thez-component of vorticity, the first
term in the right-hand side of Eq.s11d, and also stretches and
tilts the perpendicular components of vorticitysthe second
term in the same equationd so as to increase or decrease the
circulationGz associated tovz.

IV. VORTICITY DISTRIBUTION AND STABILITY

We look now for the stationary solutions of Eq.s14d. Note
first that, asG0 and Gv

0 are proportional toa, if one defines
dimensionless variables

g ; G0a−1, gv ; Gv
0a−1,

j ; za−1, jv ; zva
−1,

Ã ; v̂0a
−1, ũz ; uzsVTad−1,

x̃ ; xa−1, x̃S; xSa
−1

and uses Eqs.s3d, s4d, and s15d and the expressions of the
circulationsG0 andGv

0 f7g, the condition for stationary equi-

librium can be written in nondimensional form as

− 2 cosaE
−2

x̃S

ũzdx̃= 2S z

a
D2 ujvu4

ujv
2 − 1u2

3 ReFS ]gv

]jv
*

dÃ

dj
D

jv

G ,

s17d

where

Ãsjd = e−iaj +
eia

j
+

g + 2gv

2pi
ln j −

gv

2pi
lnSj −

1

jv
D

−
gv

2pi
lnSj −

1

jv
* D ,

gv = 8p sinaF 1 − jvjv
*

s1 + jvds1 + jv
*d

−
1 − jvjv

*

s1 − jvds1 − jv
*dG−1

,

g = −
gv

2
F2 +

1 − jvjv
*

s1 + jvds1 + jv
*d

+
1 − jvjv

*

s1 − jvds1 − jv
*dG .

In this way, allVT dependence disappears, so that given
only the values ofa and z/a, relation s17d determines a
curve in thej-plane over which a stationary distribution of
vorticity can exist. A first point to be noted is that the right-
hand side of relations17d turns out to be in magnitude much
larger than the left-hand side, except in a narrow region
where it rapidly decreases. This behavior indicates that the
joint action of advection and vortex stretching and tilting by
the spanwise flow is important only in very localized re-
gions, giving a posteriori justification for the whole ap-
proach and, in particular, to the derivation of Eq.s16d. An-
other important consequence is that the region of equilibrium
is practically independent ofz sfor instance, fora=45°
changes ofz/a between 2 and 20 lead to changes below 1%
in jv, with similar variations for other angles of attackd. This
weak z-dependence is related to thez-independence of all
factors, other thansz/ad2, in the right-hand side of Eq.s17d,
which results in turn from the assumptions leading to the
flow velocity s9d. In this sense we obtain a self-consistent
approach, but it does not exclude the possibility of more
complex flow structures, with pronouncedz-dependence.
These structures are likely to exist, probably depending on
the Reynolds number.

The second point is that only over a localized portion of
the curve, near the position of the leading edge,jl =−1, is the
equilibrium stable. To study this, we consider small pertur-
bationsdj of the location of the vortex around an equilib-
rium positionjv0, and write the nondimensional version of
Eq. s14d linearized aboutjv0 as

−
z

a

]dgv

]t
= S ]A

]jv
D

jv0

dj + S ]A

]jv
* D

jv0

dj* ,

wheredgv is the variation ofgv with respect to its equilib-
rium value, t=VTt, and A represents the nondimensional
version of the right-hand side of Eq.s14d fA is equal to the
right-hand side of Eq.s17d minus its left-hand sideg. We
define an equilibrium situation as stable if, fordgv.0 one
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has]dgv /]t,0, and fordgv,0 one has]dgv /]t.0; that
is, dgv]dgv /]t,0. Since

dgv = S ]gv

]jv
D

jv0

dj + S ]gv

]jv
* D

jv0

dj* ,

remembering thatz,0, we write the stable equilibrium con-
dition as

ReFS ]A

]jv
D

jv0

djGReFS ]gv

]jv
D

jv0

djG , 0

for any dj. Written in terms of Rej and Imj this condition
is easily checked through the negative definite character of
the resulting matrix of real coefficients.

In Fig. 3 we show the equilibrium curve in thej-plane for
a=45° andz/a=4z/D=4 fFig. 3sadg, together with the cor-
responding curve in theZ/a plane fFig. 3sbdg. The stable
region is indicated by a full line, while the dashed line cor-

responds to the unstable part. The magnitude of vortex cir-
culation increases monotonically along the curve. We can
then expect in an actual wing a distribution of vorticity along
the stable section of the curve indicated, with increasing in-
tensity towards the curve’s end. In fact, the experimental
vorticity distribution shown in Fig. 1sbd of Ref. f2g, that cor-
responds to the same angle of attack, has a striking similarity
sin position, shape, and extensiond to Fig. 3scd, where the
stable equilibrium region is shown relative to the wing sec-
tion, together with the zone of intense vorticity observed in
the experiment. The end of the stable region, where the most
intense stable vortex can exist, coincides very well with the
center of the core of intense vorticity observed in2 sthis cen-
ter is marked with a star in that referenced. The gray zone in
Fig. 3scd corresponds to that shown in deep blue color in the
cited reference.

To make a quantitative comparison, consider an average
position of the vortex weighted by vortex magnitude,

javerage;
E gvssdjvssdds

E
v

gvssdds

,

wheres is the length along the equilibrium curve, and the
integral is extended only to the stable section. Fora=45° we
obtain javerage.−1.20+i0.52, which can be compared with
the value −1.25+i0.48 used in Ref.f7g to reproduce experi-
mental results.

Finally, Fig. 4 shows the stable equilibrium curves in the
Z/a plane, for different angles of attack, all forz/a=4. The
differences are not large for angles around 45°, but fora
.70° the stable region increases and fora*75° snot
shownd it extends indefinitely. This behavior would indicate
an extended region of stationary vorticity at angles of attack
above 75°, which would be interesting to verify experimen-
tally.

V. CONCLUSIONS

An analytical study of the stationary distribution of
leading-edge vorticity was presented. It is shown that the

FIG. 3. sad Equilibrium curve in thej-plane andsbd correspond-
ing curve in theZ/a-plane. Full lines denote stable equilibrium
sections and dashed lines unstable ones.scd Region of stable equi-
librium relative to the wing section, fora=45° andz/a=4, repre-
sented with a full line, together with the region of intense vorticity
shown in deep blue color in Fig. 1sbd of Ref. f2g, represented as a
gray zone.

FIG. 4. Stable equilibrium curves in theZ/a-plane for different
angles of attack.
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basic fact of wing rotation around its root generates a span-
wise flow intense enough to maintain a stationarysrelative to
the wingd vortex, due to the balance between vorticity advec-
tion, tilting, and stretching by this flow, and vorticity genera-
tion at the leading edge, as put forward some time agof3g.
The considerations of constant angular velocity and fixed
angle of attack apply during most of each half-stroke in a
typical insect flapping sequencef15g. The approximation of
constant wing chord, use of blade element theory, and ne-
glect of wing-end effects are necessary for the analytical ap-
proach, and can be justified in usual insect wings in their
midsections, where substantial lift is generatedf6g. The
wing-end effects require a further discussion. We originally
conjectured that the main spanwise flow was produced by the
tip vortex that necessarily exists in any finite, lift-generating
wing f11g. However, no reasonable model of this vortex was
able to induce a sufficiently strong flow to stabilize the vor-
tex growth in most of the wing, only very close to the tip. As
a result we were led to consider the induction of the span-
wise flow by rotation of the wing. The conclusion was then
that the tip vortex does affect the flow in its vicinity, but
cannot induce the stabilizing flow in most of the wing. Prob-

ably related to this point is the observationf16g that the LEV
detaches at approximately 75% of the wing length, where the
influence of the tip vortex cannot be ignored. In this sense
Fig. s1dd of Ref. f2g is very suggestive as it shows the tip
vortex occupying approximately the last 25% of the wing
length. Wing-end effects should certainly be included in a
more realistic model of LEV dynamics, although the analyti-
cal approach is difficult because of the strong three-
dimensional features of the flow near the wing tip.

With all the above assumptions we identify a region close
to the leading edge where a stable stationary vorticity distri-
bution can exist that compares very well qualitatively and
quantitatively with experiments and previous theoretical ap-
proaches. Besides, extended regions of vorticity are pre-
dicted for large angles of attacksabove 75°d, a point worth
verifying experimentally.
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